Section 1.4 (page 78)

1. (a) 3 (b) 3 (c) $3 ; f(x)$ is continuous on $(-\infty, \infty)$.
2. (a) 0 (b) $0 \quad$ (c) 0 ; Discontinuity at $x=3$
3. (a) -3
(b) 3
(c) Limit does not exist.

Discontinuity at $x=2$

7. $\frac{1}{16}$ 9. $\frac{1}{10}$

11. Limit does not exist. The function decreases without bound as x approaches -3 from the left.
12. -1
13. $-1 / x^{2}$
14. $5 / 2$
15. 2
16. Limit does not exist. The function decreases without bound as x approaches π from the left and increases without bound as x approaches π from the right.
17. 8
18. Limit does not exist. The function approaches 5 from the left side of 3 but approaches 6 from the right side of 3 .
19. Discontinuous at $x=-2$ and $x=2$
20. Discontinuous at every integer
21. Continuous on $[-7,7]$
22. Continuous on $[-1,4]$
23. Nonremovable discontinuity at $x=0$
24. Continuous for all real x
25. Nonremovable discontinuities at $x=-2$ and $x=2$
26. Continuous for all real x
27. Nonremovable discontinuity at $x=1$

Removable discontinuity at $x=0$
45. Continuous for all real x
47. Removable discontinuity at $x=-2$

Nonremovable discontinuity at $x=5$
49. Nonremovable discontinuity at $x=-7$
51. Continuous for all real x
53. Nonremovable discontinuity at $x=2$
55. Continuous for all real x
57. Nonremovable discontinuities at integer multiples of $\pi / 2$
59. Nonremovable discontinuities at each integer
61.

$$
\begin{aligned}
& \lim _{x \rightarrow 0^{+}} f(x)=0 \\
& \lim _{x \rightarrow 0^{-}} f(x)=0
\end{aligned}
$$

Discontinuity at $x=-2$
63. $a=7$
65. $a=2$
67. $a=-1, b=1$
69. Continuous for all real x
71. Nonremovable discontinuities at $x=1$ and $x=-1$
73.

Nonremovable discontinuity at each integer
75.

Nonremovable discontinuity at $x=4$
77. Continuous on $(-\infty, \infty)$
79. Continuous on the open intervals $\ldots(-6,-2)$, $(-2,2)$, $(2,6)$, . . .
81.

The graph has a hole at $x=0$. The graph appears to be continuous, but the function is not continuous on $[-4,4]$.
It is not obvious from the graph that the function has a discontinuity at $x=0$.
83. Because $f(x)$ is continuous on the interval $[1,2]$ and $f(1)=37 / 12$ and $f(2)=-8 / 3$, by the Intermediate Value Theorem there exists a real number c in $[1,2]$ such that $f(c)=0$.
85. Because $f(x)$ is continuous on the interval $[0, \pi]$ and $f(0)=-3$ and $f(\pi) \approx 8.87$, by the Intermediate Value Theorem there exists a real number c in $[0, \pi]$ such that $f(c)=0$.
87. $0.68,0.6823$
89. $0.56,0.5636$
91. $f(3)=11$
93. $f(2)=4$
95. (a) The limit does not exist at $x=c$.
(b) The function is not defined at $x=c$.
(c) The limit exists, but it is not equal to the value of the function at $x=c$.
(d) The limit does not exist at $x=c$.
97. If f and g are continuous for all real x, then so is $f+g$ (Theorem 1.11, part 2). However, f / g might not be continuous if $g(x)=0$. For example, let $f(x)=x$ and $g(x)=x^{2}-1$. Then f and g are continuous for all real x, but f / g is not continuous at $x= \pm 1$.
99. True
101. False. A rational function can be written as $P(x) / Q(x)$ where P and Q are polynomials of degree m and n, respectively. It can have, at most, n discontinuities.
103. $\lim _{t \rightarrow 4^{-}} f(t) \approx 28 ; \lim _{t \rightarrow 4^{+}} f(t) \approx 56$

At the end of day 3 , the amount of chlorine in the pool is about 28 oz . At the beginning of day 4, the amount of chlorine in the pool is about 56 oz .
105. $C= \begin{cases}0.40, & 0<t \leq 10 \\ 0.40+0.05 \llbracket t-9 \rrbracket, & t>10, t \text { is not an integer } \\ 0.40+0.05(t-10), & t>10, t \text { is an integer }\end{cases}$

There is a nonremovable discontinuity at each integer greater than or equal to 10 .

107-109. Proofs 111. Answers will vary.

(b) There appears to be a limiting speed, and a possible cause is air resistance.
115. $c=(-1 \pm \sqrt{5}) / 2$
117. Domain: $\left[-c^{2}, 0\right) \cup(0, \infty)$; Let $f(0)=1 /(2 c)$
119. $h(x)$ has a nonremovable discontinuity at every integer except 0 .

121. Putnam Problem B2, 1988

